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The purpose of this paper is to introduce a new method formed by fusing the
Lagrange—Galerkin and spectral element methods. The Lagrange—Galerkin method
traces the characteristic curves of the solution and, consequently, is very well suited
for resolving the nonlinearities introduced by the advection operator of the fluid
dynamics equations. Spectral element methods are essentially higher order finite
element methods that exhibit spectral (exponential) convergence, provided that the
solution is a smooth function. By combining these two methods, a numerical scheme
can be constructed that resolves, with extremely high precision, the nonlinearities of
the advection terms and the smooth regions of the flow generated by the diffusion
terms. This paper describes the construction of the Lagrange—Galerkin spectral el-
ement method which permits the use of any grid type including unstructured grids.
The only restriction at the moment is that the grid elements be quadrilaterals. The sta-
bility analysis of both methods demonstrates why these two methods are so powerful
individually and how their fusion leads to an improved scheme. The Lagrange—
Galerkin spectral element method is validated using the 1D and 2D advection and
advection—diffusion equations. The results of the stability analysis and the numerical
experiments demonstrate the utility of such an approaghsss Academic press

Key Wordsadvection—diffusion equation; finite element; flux-corrected transport
(fct); icosahedral grid; Lagrange—Galerkin; Legendre polynomial; semi-Lagrangian;
spectral element; unstructured grid.

1. INTRODUCTION

The spectral element method combines the benefits extracted from both the spe
method and the finite element method. The spectral element method can be describ
a method that can automatically generate any order polynomial basis function, as ir
spectral method, while allowing for the geometrical flexibility enjoyed by the finite eleme
method. The spectral element method may use any type of Jacobi polynomial to de
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the basis functions but typically either Chebyshev or Legendre polynomials are use
this paper, Legendre polynomials are used. The prosperity of the spectral element m
can be attributed to the fact that any order polynomial can be generated automatic
concurrently with its numerical integration rule. If we select the Gauss quadrature pc
for the integration rules to be the collocation points we get orthogonal basis functions w
means that the mass matrices are then diagonal. There is also no need to define the
functions explicitly because we can define implicit relatiariori for the inner products
of the functions and their derivatives. Since the collocation points are not equi-spa
staggered grids can be generated automatically by using varying order polynomials fo
different variables (say the pressure and velocity in Navier—Stokes) as is done in [9
the shallow-water equations which then satisfies the Babuska—Brezzi condition, the
avoiding the development of any spurious pressure modes. Many researchers have us
spectral element method successfully for Stokes flows [13], the shallow-water equal
[9, 10], and Navier—Stokes.

The advection terms in the governing equations of fluid motion present formidable ¢
lenges to many discretization methods, including Galerkin methods. These terms mak
operator non-self-adjoint and as a result, prevents the optimization of these method:
combining the time derivative and the advection terms into the Lagrangian derivative
then discretizing the resulting operator, many of these difficulties are circumvented; th
the Lagrange—Galerkin method. This method not only increases the solution accurac
also allows for much larger time steps therefore making it potentially more efficient tt
Eulerian methods. Lagrange—Galerkin methods have increased in popularity in the la
years because they offer increased accuracy and efficiency by virtue of their indepenc
on the CFL condition. Researchers have used this method successfully for advection [5
advection—diffusion [7], shallow water, and Navier—Stokes.

There have been few attempts at combining Lagrangian methods with high order sf
discretization methods. In [15], a method is presented which combines the spectral me
with the method of characteristics. While this approach offers accuracy it does not ¢
geometric flexibility due to the restriction on the grid dictated by the spectral method
[8], a characteristic-based spectral element method is introduced which uses an ex
time-stepping scheme in order to get the values at the foot of the characteristics.
approach preserves the Eulerian-like structure of the equations, thereby avoiding the s
for the departure points that is typically associated with the Lagrange—Galerkin metl
It is unclear how the structure-preserving schemes affect the stability. In any event,
approach is shown to be unconditionally stable and, because it is constructed in a ge
fashion, it is perfectly suited for all types of grids, including unstructured grids.

The following section describes the implementations of both the spectral element
Lagrange—Galerkin spectral element methods on the 1D advection—diffusion equatior

2. ONE-DIMENSIONAL ADVECTION-DIFFUSION EQUATION

2.1. Spectral Element Method

For stability analysis purposes and for describing the algorithms, we shall use the
advection—diffusion equation. The time discretization is handled in this paper by th
algorithm which defines a family of explicit and implicit schemes. The governing equat
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is defined as

9 3 32
¢ e _ Ve

dp 0 _ 00 1
ot TUax = Vaxe (1)

The spatial discretization by the spectral element method follows closely the discretize
of the finite element method. After applying the method of weighted residuals we ob
the relation

Xo+AX Xo+AX aw]
/ Vi X—+/ wiwkukwdxﬂﬁj
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= —y ——dX(pj—i-v{wi—J(pj} ,
/XO X 9X ax %o
whereyr are the basis functions in terms of physical space,iapck =0, ..., N, where

N is the order of the basis functions. After mapping to computational space by virtue
&= (2/AX)(X — Xo) — 1 we arrive at
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whereh(&) are the Legendre cardinal basis functions, M is the mass matrix, A is the ad\
tion matrix, D is the diffusion matrix, and R is the boundary vector. The time discretizati
by the6 algorithm yields the relation

[Mij + AtO(A;] + Diplef*t = [Mij — At(L— 0)(Ajj + Dip]e]
+At[OR™ + (1 - )R] (2

which for6 = 0 yields the forward Euler (explicit and first order in time), foe % yields
the trapezoidal rule (implicit and second order), andfet 1 yields the backward Euler
(implicit and first order). Because of the higher order achieved with the trapezoidal |
6= %) this is the value that is used throughout the paper.

Typically, explicit methods have been used in conjunction with the spectral elem
method, although there have been some attempts at using implicit methods [9]. The
vantage in using explicit methods arise from the nonsymmetry and large bandwidth
the system of equations resulting from the spectral element discretization. Becaus
this nonsymmetry, it makes it very difficult to select a robust and efficient matrix solv
In [9], a GMRES solver was used but was not found sufficiently cost-effective. In tl
paper, an LU decomposition (direct solver) is used for simplicity. Therefore, an impli
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time discretization may not be the most efficient possibility, but it is nonetheless use
order to show how the Lagrange—Galerkin formulation is constructed on top of this
lerian version. In the Lagrange—Galerkin version described in the next section, the
discretization must be implicit in order for the method to be unconditionally stable.

The spatial accuracy is determined by the order of the basis functions and will be of
O(AxN+1). As an example, foN =1 we have linear elements, but second-order spat
accuracy. In this article, the element basis functions are the Legendre cardinal func
(for details on these basis functions see [13]). To keep the algorithm as general ar
automatic as possible, we evaluate the integrals numerically. In other words, the r
matrix is evaluated as

Q
A
Mij = —Zx E wqh; (Ex)hj (&),
a0

where Q represents the number of Legendre—Gauss—Lobatto quadrature points. Th
maining matrices are evaluated similarly. In order to obtain exact integrations for this ma
at leastQ = N + 1 quadrature points are required. This is the minimum required beca
an integration rule of ordeN will integrate exactly any polynomial of ordef\e— 1, but
since the mass matrix contains polynomials of ordér then higher order integration rules
are required. The rules given above (i©.= N + 1) will integrate exactly polynomials
of order 2N + 1, which is more than sufficient. In typical implementations of the spect
element methodQ = N is used. In Section 3 (Stability Analysis), the effect of using exa
versus nonexact integration is discussed.

2.2. Lagrange—Galerkin Spectral Element Method

Lagrange—Galerkin methods belong to the general class of upwinding methods. T
methods incorporate characteristic information into the numerical scheme. The Lagrar
form of (1) is

de 3%

dat = o ®)
dx

a = U(X, t)v (4)

whered/dt denotes the total derivative and is defined as

d a 0

dt ot | ax’

Applying the method of weighted residuals directly onto the Lagrangian operator yields
two-time level direct Lagrange—Galerkin method (for an explanation of the weak versus
direct Lagrange-Galerkin method see [5])

[Mij + AtODyj]o] " = [Mj — At(1—60)Dyj13] + At[OR™ + (1-60)R"], (5)

wherep™! = (x, t + At) and¢" = ¢(X — a, t) are the solutions at the arrivat, = x)
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and departure poinixy = X — «), respectively. Integrating (4) by the mid-point rule yield:s

At
= At t+ — 6
o u<x > + 2) (6)

which defines a recursive relation for the Lagrange—Galerkin departure points.

As inthe Eulerian version described previously, the value% is used throughout for the
Lagrange—Galerkin method. Note that, although this defines an implicit scheme, it yi
a much easier system of linear equations to solve because the global coefficient mat
symmetric. This is different from the Eulerian version and this property is critical to t
efficiency of the Lagrange—Galerkin method. Now, instead of using an LU decompositio
some nonsymmetric iterative solver, we can use classic methods that are robust and eff
such as the conjugate gradient method. However, for the sake of fairness in comparin
computational costs (Table VII) of the algorithms an LU decomposition is also used for
Lagrange—Galerkin method.

We still need to consider how we are going to interpolate the valugsbthe departure
points(xy = X — «). Interpolation is required because, in general, the departure points \
not fall on grid points but rather between them. Typically, the interpolations are construc
using one of the following three types of functions: Lagrange, Hermite, or spline poly:
mials. The difficulty with these methods is that they require some structure in the grid (
curvilinear coordinates) and while this does not affect the 1D case, it would be quite lir
ing in the 2D case where the elements are not required to have a true structure. (A ¢
is in order here: cubic splines can be constructed from unstructured data, but these r
ods are generally impractical for CFD-type computations because they are prohibiti
expensive.) The incentive for combining the spectral element method with the Lagrar
Galerkin method is due to the high order polynomials of the spectral element method
are also locally defined within each element. We can determine in which spectral elem
given departure point lies and then use the basis functions within the element to cons
the interpolation required by the Lagrange—Galerkin method. Since the order of the k
functions are typically high order, the interpolation will be of a sufficiently high order
ensure the high order spatial and temporal accuracy of the numerical scheme.

Since the Legendre cardinal basis functions have to be able to interpolate any depe
point, they have to be constructed explicitly. The Legendre cardinal basis functions ca
written using the definition for Lagrange polynomials,

N
£ —§& )

hi(§) = — 7

j#i

and its derivatives are
N N 1 S _ Sj

20 ) , 8
(E) ZE( gk) (a—s,—) ®)

k=0
k&£ j#i

where the§, &;, & are the permutations of the Legendre—Gauss—Lobatto (collocati
points. These two relations are very general and valid for any order Legendre carc
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basis function and can be used quite easily to generate the desired interpolating po
mial for the Lagrange—Galerkin method. In the next section, the stability analysis of t
methods is performed on the 1D advection—diffusion equation.

3. STABILITY ANALYSIS

3.1. Spectral Element Method

Equation (2) can be written in the following more explicit form:

9 Atv oh; oh n
gwq[h (ol &) + 20 ot ) 2 i e a0 o o
Q
:qu[hi@q)hj(éq) 20-0) 2 &) s@q)
g=0
Atv ah;
400355 M g E@q) o

These are element equations but in order to study the stability at the nodes the grid
equations must be obtained. Therefore, the contributions of the elements to each node
be summed. Below, the analysis for the external and internal nodes (collocation points
derived.

DerINITION 1. External nodes are those points which define the boundary of a spe«
element. In 1D, the external nodes are the left- and right-most collocation points cc
sponding td =0 andN.

DEFINITION 2. Internal nodes are any other collocation points corresponditig=to
1,....,N—-1

By substituting the nondimensional parameters
Atu Atv . -
o = — (Courant number) u = — (diffusion coefficient)
AX AX2

and introducing the Fourier modes

— G lgt+1+6))/29 n+1 — G lg—1- 51)/2)¢

%+<1+s. 2 = Y)—1-g)/2 =

whereg is the phase angle ané- /—1 gives the total contributions to the external ngde
to be

N
> (M} + 200 A} + 49D} ) GM e 1-8)/29
j=0

+ (M§ + 200 A] + 46, D) G" e HE)/29]

i)

=0 +(M} —2(1 - 6)0 A} — 4(1 — 6)uD})GnetUH1+4)/29

(M} =21 — )0 A, — 41 — 6)uD!) Gerv-(A-¢/29
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where

Q Q

=Y wghnGhj &), M] = wgho(Eh; (¢q)
g=0 q=0
2 ahj r 2

= quhN(éq)E(Eq), Aj = Z 0(§q) é_ (gq)
q=0 q=0
Q Q

dhy _ oh;

= _— —_— N DI’ =

%wq 5g )55 Ga) D gwq > <sq> s<éq>

and the superscriptsandr denote the contributions from the left and right elements 1
the node). Upon dividing byG"e”?, using Euler’s formulae™? = cos¢ + +sing, and
multiplying by the complex conjugate, we get

G = Re(G) — 1 Im(G),

where
YL Yo (RE RE, +Im! Im)) YL Y (RE Imf —Rd Im')
R = o s (R R rim i) T ST SN (RéRd ] )
9
and

2
1-§
2

+ (M —2(1—6)0 A| — 41— 6)uD') COS(1+51 >¢

Imf = (M} —2(1-60)c A, —4(1—9)MD'j)sin< é

— (Ml —2(1 - 6)0 A — 4(1 — 6)uD') Sin(lv;é‘i )¢

Re = (M} + 200 A, +49..D})) cos(l_—;j)¢>

14§
+(M;+290AG+40MDE)COS< 5 '>¢
Im| = (M} + 205 A, +46,.D}) sin ki P
=M j HE 2

. (1 i
— (M} + 200 A +40uDY) sm(%g‘)q&
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For the internal nodgthe corresponding relation is

N
Z [(M]r + ZGO'Ar] + 49MDIJj)Gn+1ez(j+(1+$j)/2)¢]
=0

N
=> [(M] —2(1 - 0)0 A| — 4(1— 6)uD})G"e U H+6/29]
j=0

along with

[ 2(1—60)0 A} — 41— 0)uD") cos(lJréj )¢

Im’ = —(M! —2(1—6)0 A} — 41— 6)uDY) sin<1+€j )¢

1 .
Ré = +(M] + 200 A} + 461.D5) cos( J;'g' )¢

at i
Im| = —(M{ + 200 A] + 40..DY)) sm( _;E' )¢.

Using these relations the amplification factor is defined as

Gl = \/RE(G) + Im2(G) (10)
and the dispersion error as
P = @/GQS? (11)

where

is the phase angle.

3.2. Lagrange—Galerkin Spectral Element Method

Equation (5) can be written in the more explicit form:

Q
Atv dh; nt1
gwq [h Ehj o) +40 17 5% — (&) 5% (sq)]
Q Atvah, _ dh
=> wq [hi (Ehj (&) —41=-0) 3 ‘; 5% &y 5% (Eq)] 05

q=0

However, we still need to introduce the interpolatigh Ih the Lagrangian version of this
algorithm, the spectral element basis functions are used as the interpolation functior
other words, first we need to determine in which element the departure point lies which
be performed efficiently with the bisection method in 1D and the quadtree method in
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The interpolation within the element is written as

N It i~
2 k=09 p-ap-t-g0/2Nk(E ), If & <0,

~n
Qi = N - s
> k=0 (p‘?—p—Ap+(l+§k)/2hk($j)’ if & >0,

whereé'j =& — (@ +1) anda’'e[—-1, 1] is the real part of the Courant numberand is
related to it by the relation

a+1

> (12)

wherep is the integer part of . In addition, the following definitions are also required:

{gj=§j+2, Ap=1 if§ <—
] ~
3

~ 1
§i=19 _ (13)
&j, Ap=0 if 1

The parameteAp is required because in most instances the departure points of the exte

nodes, of a given element, may lie within two different grid elements; in this situatipn,

determines in which of the two grid elements the departure points of the internal node:
Introducing the Fourier modes

G~ P-AP+I+E)/2¢ — GNgU—P-Ap-(1-£)/2¢

n —
@) p—Ap+(A+E)/2 = <P —p—Ap—(1—£))/2 =

we get the total contributions to the external ngde be

N
Z [(MI] +MMDIJ_)Gn+leb(.7—(1—éj)/2)¢ + (MJF + 49MDE)GH+1eL(J+(1+$j)/2)¢]
j=0

i (Ml — 41— Q)I‘LDI){Ek Gneli—p—Ap-(1- fk)/2)¢hk(%‘ )}

i—o Jr —4(1—-06)u D;) {Zk:o Gne'z(J—p—Ap+(1+Sk)/2)¢hk(§J. )}
and after simplifying they yield

= [Re(G) — 1 Im(G)]e*P?,

where R€G) and Im(G) are given by (9) and
Re, = (Mj — 41— 6)uD)) cos(Ap+ 25’ >¢

+ (M] — 41 - 6)uDj) COS(—Ap_|_ 1+_2§J>¢
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Imf, = (M} _4(1_9)MD|J-)Sin<Ap+ 1—2$;>¢

1
— (M} — 41— 0)uD") sin< Ap+ J;é' >¢>

Re = (M; -|—4@/LD|)COS(AD+ 251)4)

+ (M] +46..D5) cos< Ap+ _;EJ )qﬁ

Im} = (M} +46uD)) sin(Ap + 1_251' )¢

— (M] +46,.DY) sin< Ap + J;EJ >¢.

For the internal nodethe corresponding relation is

N
2 [(M] +40uDj)GM e efae]
N
ZZ (M} — 4(1 — 6)uD {ZGn TR, )H
= k=0

along with

Re =+ (M| — 41— 6)uDj) cos(—Aer et )d)

2

Im} = —(Mj — 4(1 - 0)Dj) Sin(—Ap+ ﬂ)d)

Réj=+(M}+40uDE)cos< Ap + _;EJ>¢

. 1+
Iml, = —(M] +49,uDE)SIn< Ap + 25J>¢.

The amplification factor is given by (10), but the dispersion error is now defined as

po + @
op

€p = (14)

Remarkl. The 2D stability analysis follows quite easily from the 1D analysis. Th
is, the theory behind the 2D analysis follows closely the 1D analysis but the 2D anal
requires much more algebra and book keeping due to the 2D analogs of Egs. (12) and
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The 1D analysis yields much insight into the stability of the 2D numerical scheme; howe
the 1D analysis tells us nothing about the effects of using distorted quadrilateral elem
on the stability and accuracy of the scheme.

3.3. Stability Analysis Results
3.3.1. Spectral Element Method

The amplitude factors and dispersion errors for both methods are illustrated up
Courant number of = 4. In addition, results are illustrated for exdQ = (2N + 1)/2)
and nonexadtQ = N) integration for the spectral element method. For brevity, comparisc
for the Lagrange—Galerkin spectral element method using exact and non—exact integt
are not shown because the spectral element method contains all of the matrices con
within the Lagrangian version. However, the results for the external and internal node
both methods are presented.

Figures 1 and 2 show the dispersion errors for the spectral element method for
advection using exact and nonexact integration, respectively. (The amplification fac
are not illustrated because this method experiences no amplification errors\)=Far
large differences exist between the exact and nonexact methods. Note that a discont
appears to be present for all phase angles at0. This just shows that at this Courant
number nothing is happening (i.e. stationary flow) and so the amplitude factor and
normalized dispersion error should be 1, meaning that no errors exist at a. £&, the
differences are obvious but they are not too great. FinallyNfer 4 no differences exist
between the two methods. This is also true for the internal nodes. From here on, onl
nonexact integration results are illustrated.

Figure 2 shows that fdX = 1, the scheme is atrocious and in factis never used. Howev
the exact integration method is equivalent to the finite element method with linear eleme
At N =2, the situation is much improved but lagging and leading errors are still pres
albeit quite small, for < % For N > 4, the scheme suffers absolutely no phase errors f
o < 3. This is also true for the internal nodes (Fig. 3). Bot o < 1 the scheme suffers
errors for the short waves (largg, but is nondispersive for the long waves. As we increa:s
o, especially beyon(%, the scheme continues to experience lagging errors for the sh
waves and for a large part of the long waves. The scheme is well behaved only for p
anglesp < /4. This analysis shows that it does not make sense to use Courant num
that are too large not because of stability reasons but for accuracy. It does make s
however, to use high Courant numbers if some sort of dissipation mechanism is introd
which will hinder the propagation of the dispersive waves. Lagrange—Galerkin method:
precisely this.

3.3.2. Lagrange—Galerkin Spectral Element Method

Figures 4 and 5 show the external node amplitude factors and dispersion errors, re
tively, for the Lagrange—Galerkin spectral element method for pure advection while Fit
shows the results for the internal nodes. Rbe 1, the amplification factors are clearly
cyclical and do not change for differeat but rather are only a function of the real par
a (as opposed to the integer pa} of o. These results show that for neae=0 or 1



FIG. 1. The external node dispersion error for the 1D advection equation as a func@o(Cafurant num-
ber) andg (phase angle) for the spectral element method using exact integration fdr=d); (b) N =2, and
(c)N=>4.
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FIG. 2. The external node dispersion error for the 1D advection equation for the spectral element me
using nonexact integration for (& =1, (b) N =2, and (c)N > 4.
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FIG. 3. The internal node dispersion error for the 1D advection equation for the spectral element me
using nonexact integration for (& =2 and (b)N > 4.

the scheme exhibits absolutely no dissipation and very little dispersion, bmt:@r the
scheme is excessively dissipative for the short waves, but this behavior is desirable be:
these tend to be where the scheme is most dispersive. For the long waves, the sche
slightly dissipative and nondispersive. This scheme is in fact identical to the typical fi
order upwinding scheme, at least ok 1, and the results for this scheme match the resul
given in [11] for a finite difference semi-Lagrangian method with linear interpolation. Th
the Lagrange—Galerkin method can be likened to the upwinding method but valid fol
Courant numbers including those far greater than 1.Nfef2, the scheme becomes les:
dissipative but also less dispersive. For> 4 the scheme exhibits neither dissipation no
dispersion errors for both the external and internal nodes; for this reason, the stability |
for the high order casad\ > 4) are not shown.
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FIG. 4. The external node amplification factor for the 1D advection equation for the Lagrange—Galel
spectral element method using nonexact integration foN(&)1 and (b)N = 2.

For the spectral element method with diffusion, the dispersion errors are identical to tf
obtained for pure advection but now due to the viscosity it now experiences some dissipe
For the Lagrange—Galerkin spectral element method with diffusion, the dispersion er
also look rather similar to the pure advection results while the amplitude errors are gre
in this case (Fig. 7) and they linger for allandN but only for large phase angles.

This analysis shows that the Lagrange—Galerkin spectral element methdd>far
works extremely well for advection-dominated flows. For advection—diffusion, there
some dissipation associated with the viscosity which is to be expected and in no way d
from the accuracy of the scheme. In fact, the addition of the Lagrange—Galerkin methc
the spectral element method introduces the dissipation mechanism that the spectral el
method needs for high Courant numbers without diminishing the accuracy of the sche
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FIG.5. The external node dispersion error for the 1D advection equation for the Lagrange—Galerkin spe
element method using nonexact integration forNaj 1 and (b)N =2.

The fusion of the Lagrange—Galerkin method with the spectral element method on the
advection-diffusion equation is explored in the following section.

4. TWO-DIMENSIONAL ADVECTION-DIFFUSION EQUATION

4.1. Spectral Element Method

The 2D advection—diffusion equation can be given in a similar fashion to (1) as
dp

i +u-Veg =1V (15)
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FIG. 6. The internal node (a) amplification factor and (b) dispersion error for the 1D advection equation
the Lagrange—Galerkin spectral element method using nonexact integratidr=f@r

and the spatial discretization is written as
e do 2P . A
Vi dQW + Yi YU - ij dQ(P]
Q Q
= —v/ Vi - Vi dQg; +v/(n~V(p)§/fi dar
Q r

which yields the time discretization

[Mijir + AtO(Aju + Dij)leg™ = [Miji — At(1 — 0)(Aiji + Dijin)] o
+ AR 4+ (1-0)RY],
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FIG. 7. The external node amplification factor for the 1D advection—diffusion equation for the Lagran
Galerkin spectral element method using nonexact integratiorufer0.01 and (a)N =1, (b) N=2, and
(c)N=>4.



132 FRANCIS X. GIRALDO

where the matrix terms are

+1 41
Mk =/gwwkl dsz=/l/l 3G, mihi )h; () he(@)h () d& dn

Aijii = / 1pijl//mnumn'VlﬂmdQ
Q

+1 p+1 oh )
_ / / 19 DI D) ) e 3™ Py )l
-1J-1 & X

+1 p+1 8h| 87']
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fori, j,k,1,m,n=0, ..., N,wherenis the unit normal vector andlis the Jacobian of the
transformation from physical to computational space. The coordinates within an elen
are approximated by the basis functions by

N N
=> > xihi©hj)

i=0 j=0

and its derivative are given by

N N
ZZX., 7 " eh; o,

i=0 j=0

whereN represents the number of collocation points intla@dn directions. The remainder
of the derivatives are obtained following the same procedure. Note that the extensic
three dimensions is immediately obvious from the two-dimensional case.

To keep the algorithm as general and as automatic as possible, we evaluate the int
numerically. Therefore, the mass matrix is evaluated as

Q Q
Mija =Y > 13, 1) lwarhi (Eg)hj (o) hiE)hi (re),

q=0 r=0

whereQ represents the number of Legendre—Gauss—Lobatto quadrature points antthe
n directions. In general, for exact integration of the matrices we requir€batcN+1)/2,
wherec is an integer constant denoting the factor of the maximum order matrix. In the ¢
of the advection—diffusion equation= 2 which corresponds to the mass matrix. For th
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case of the shallow water equations or the Navier—Stokes (and Euler) equatio®snd
corresponds to many terms, one of which is the advection operator. Note, however, the
1D stability analysis showed that fdt > 4 it makes no difference whether the exact o
nonexact integration is used. Numerical results confirm this and for this reason the che
nonexact integration method is used throughout the paper.

4.2. Lagrange—Galerkin Spectral Element Method

The 2D advection—diffusion equation in Lagrangian form is written as

de 2

T — vV

at ="V ¢
dx dy
at =% a7

which yields the matrix relation
[Mijig + AtODjja]ep™ = [Miju — At(L— 0)Dij]@p + At[ORI T+ (1— 0)R]].

where the departure points are definedxas-x —a and the trajectories are obtainec
from

« At
a_Atu<x—§,t+7> (16)
and the matrices are defined as in the Eulerian case. Note that the trajectory relation
gives the departure poiny and says nothing of where this point is located. Therefor
some means of searching the elements of the grid must be devised to determine v
element contains the departure point in order to interpolate the variables (in thig ca
andu) using the element basis functions. For general grids, the best approach is to |
guadtree data structure. For the icosahedral grids used as one test case in this paper, t
structure described in [5] should be used. But once the element claiming the departure
is found, we still need to determine its coordinates in terms of the computational space
is essential because all of the spectral element basis functions are written in terms ¢
computational coordinates. Equation (16) will only give the coordinates of the depar
point in terms of the physical space. The departure point coordinates in physical spac
be written using the basis functions in the form

N

N
Xa = > xijhiEnhjna)
i=0

j=0
and by virtue of Newton’s method, we write the iterative scheme for the (6gtgq) as
et = FX 4 V(&8 nf) - (dg, dm) = O, (17

where

N

F=Z Xij hi (§a)hj (nd) — Xa.

N
i=0 j=0
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This leads to the solutions

k aEkK
_Epk % LA
1 ap 9E 1
Ak k
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dE . 2 ap dn = 9E 2
T OFK aFk n= aFf aFf 7’
aFy oFk aFy oFk
EE g Tan

where

g =gk +dg, kTt =k +dn
which only requires five iterations at most. Thu@ﬁ“, n'é“) € [-1, 1], thenthe departure
point is contained within this element. Clearly, ldsincreases, the cost of searching will
increase by an order &f2. So, instead of using the full polynomial of degidewe use the
vertices of the quadrilateral element (linear polynomial) to find the assodiateqy) for
a given(Xxq, Yq)- Upon obtaining the departure point in terms of the computational spe
coordinates the interpolation is then obtained usingNitle-order basis functions of the
element. The use of the linear basis functions to fiad n4) has absolutely no impact
on the accuracy of the scheme, while costing far less than using thdthWbrder basis
functions.

4.2.1. Searching Algorithms

Because the Lagrange—Galerkin method requires the calculation of departure point
success of the method hinges on the rapidity of the searching algorithms. The object c
searching algorithm is to determine in which element a particular departure point lies.

QuadTree. For general grids, the best strategy is to find the closest node (grid point
the departure point by virtue of a quadtree data structurequatitregl:ntreg 1:7]
be an integer array which stores this quadtree. This array stores the following in
mation:

quadtredi, 1—4] store the four children of this quad.

quadtredi, 5] stores the position of this quad with respect to its parent.
quad tredi, 6] stores the location of its parent.

quadtredi, 7] stores the number of nodes contained within this quad.

This defines a standard quadtree data structure; however, it is important to note that th
no need to use all of the nodes comprising the spectral element grid. In fact, only
vertices of each quadrilateral element (i.e., the four corner nodes) are required v
the rest of the collocation points can be omitted. This saves a lot of effort in the searc
process especially for high order grids (i.e. lafde Upon finding this nearest neighbor
(closest node), we then search through the list of elements which claim this node and c
for inclusion using the iterative approach defined in (17). There are usually no more t
six elements claiming each node, even for distorted unstructured grids, which means
the iterative approach does not dominate the computational cost of the scheme. For h
distorted grids, however, the departure point may not necessarily lie within one of
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elements claiming the nearest neighbor. In this case, during the sweep through the ele
list claiming the nearest neighbor, the minimum distance between the departure poin
the element nodes is stored. The element node yielding the minimum distance is consi
to be the new nearest neighbor. If no inclusion is found, then the new nearest neight
used and the process is continued. Therefore, in the worst case scenario, only two n
neighbor loops through the iterative approach are required. This can have adverse a
on the efficiency of the scheme if this case arises often; for the grids used in this paper
situation did not present itself.

IcoTree. When a specific type of grid is being used, it is imperative to exploit at
properties that it may have. For instance, the icosahedral grid used as one test case
next section has an inherent tree data structure associated with it. In this case, the qu
is abandoned for the ad-hoc data structure that can be constructed for this type of
The icosahedral grid on the plane is constructed by dividing a hexagon into six equila
triangles. Then each triangle can be subdivided into four smaller equilateral triangles ai
on. The quadrilateral spectral elements are then obtained by dividing each triangle into
quadrilaterals. Leico_treg[1: ntreg 1: 8] be an integer array which stores the icosahedr
tree. This array stores the following information:

e ico_tredi, 1-3] store the location of the three nodes which defines this triangle.
e ico_tredi, 4] stores the location of its parent.
e ico_tredi, 5—8] store the locations of its four children.

In addition, another array is required which stores the spectral elements contained w
each ofthe triangles. Létee_intmd1 : ntreg 1 : 3] be this array. Clearly the icosahedral tree
like the quadtree, is also of order lpgtree The difference between the two data structure
is that the icosahedral tree finds the triangle which contains the departure point, while
guadtree finds the nearest neighbor. Once this triangle is found, theiteayntmdi,
1-3] is used to loop through the three spectral elements contained within this trian
Thus the iterative approach given in (17) only requires sweeping through three elen
which will always cost far less than the quadtree which may require looping through
elements.

5. NUMERICAL EXPERIMENTS

For the numerical experiments, the following terms are used in order to compare
performance of the schemes: thgerror norm,

lell fg(@exact_ @)2 dQ
L - b
’ fsz PocactdS2

and the first and second moments of mass,

2
Q
JopdS2 M, — Jo 92 dQ

Ml = 7T 3~ 2 T 5 g~
f Q Pexactd2 f Q (pgxactdQ

The L, error norm compares the root mean square percentage error of the numerica
exact solutions, while the first moment measures the percentage mass of the system, a
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second moment measures the amount of dissipation inherent within the numerical sct
The ideal scheme should yield an error norm of zero and first and second moments of

5.1. One-Dimensional Advection—Diffusion Equation

For the spectral element method, the governing equation is given by (1) and the dis
tized equation by (2). For the Lagrange—Galerkin spectral element method, the govel
equation is given by (3) and (4), while the discretized equation is given by (5).

The initial condition is given as

p(x, 0) = &K /2%
with periodic boundary conditions which yields the exact solution

o(X, 1) = L e*(X*Xo*UI)Z/Z()»ngZuI)

VAZ+ 2ut

wherei, = % Xo = 0, andx € [—1, 1] with the velocityu = 2. The results are given for one
revolution(t = 1.0) of the initial wave.

Table | lists the pure advectiou =0) results for the spectral element (SEM) anc
Lagrange—Galerkin spectral element methods (L-G SEM)fer0.25. Because of the
variable distance between any two nodes due to the Legendre—Gauss—Lobatto colloc
points, the Courant numbers are never exactly the same when using varying ortlers
(polynomial order) andNg (number of elements) for a given number W§ (total grid
points). However, the Courant numbers used are equal at least to one decimal place. T
sults show that both methods give impressive results, butifer4 the Lagrange—Galerkin
spectral element method is superior to the spectral element method. Table Il shows the
results but forw = 0.01. These results are qualitatively similar to fhe- 0 case. Table I
shows theu = 0 results for various for the Lagrange—Galerkin spectral element metho
From the stability analysis, the spectral element method is adversely affected by the inci
in o, but the Lagrange—Galerkin method is not. The numerical results also seem to indi
that the Lagrange—Galerkin method, in fact, improves with increased Courant number

TABLE |
Results for the 1D Advection Equation for the Spectral Element and Lagrange—Galerkin
Spectral Element Methods foro =~ 0.25

Method N Ne At o lell, M M,

SEM 1 10 0.025000 0.25 21x 10° 1.0000 1.0000
2 10 0.012500 0.25 84x 101 1.0000 1.0000

4 10 0.004000 0.23 A47x 101 1.0000 1.0000

6 10 0.002000 0.24 87x 103 1.0000 1.0000

8 10 0.001250 0.25 .30x 104 1.0000 1.0000

10 10 0.000800 0.24 9% 1074 1.0000 1.0000

L-G SEM 1 10 0.025000 0.25 Blx10* 1.0000 0.2316
2 10 0.012500 0.25 43x 10! 0.9996 0.7061

4 10 0.004000 0.23 23x 1072 1.0000 1.0179

6 10 0.002000 0.24 06x 103 1.0000 0.9997

8 10 0.001250 0.25 04x10° 1.0000 1.0000

10 10 0.000800 0.24 .32x 1077 1.0000 1.0000
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TABLE Il
Results for the 1D Advection—Diffusion Equation for the Spectral Element and Lagrange—
Galerkin Spectral Element Methods foro =~ 0.25 and . = 0.01
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Method N Ne At ) lell, M M,

SEM 1 10 0.025000 0.016000 8x 101 1.0009 1.1268
2 10 0.012500 0.008000 13x 10t 0.9997 0.9978

4 10 0.004000 0.002980 BBx 103 1.0000 1.0001

6 10 0.002000 0.001500 A4 x 1073 1.0000 1.0000

8 10 0.001250 0.000800 I x 104 1.0000 1.0000

10 10 0.000800 0.000545 TAx 10 1.0000 1.0000

L-G SEM 1 10 0.025000 0.016000 AMBx 1071 1.0009 0.4126
2 10 0.012500 0.008000 @3x 101 0.9993 0.8413

4 10 0.004000 0.002980 96 102 1.0000 1.0082

6 10 0.002000 0.001500 &7 x 1074 1.0000 0.9998

8 10 0.001250 0.000800 28x 10°° 1.0000 1.0000

10 10 0.000800 0.000545 2D x 107 1.0000 1.0000

Remark2. Table lll shows that the Lagrange—Galerkin spectral element method
proves as the Courant number is increased. This would be the case for ever incre
Courant numbers, if and only if the trajectories could be computed exactly. If this w
possible, then the scheme could be run with infinitely large Courant numbers witt
any deterioration in accuracy. But since this is not the case, taking large enough Cot
numbers will eventually lead to large errors in the trajectory calculation which will th
severely diminish the accuracy of the scheme. In fact, the reason why we see al
crease in accuracy for large Courant numbers is because fewer interpolations are

used.

TABLE IlI
Results for the 1D Advection Equation for the Lagrange—Galerkin Spectral Element

Method for Various o

Method N Ne At o lell, M, M,

L-G SEM 4 10 0.004000 0.23 A3 10792 1.0000 1.0179
4 10 0.008000 0.46 .03 x 10792 1.0000 1.0077

4 10 Q033333 1.93 75%x 10793 0.9999 1.0005

6 10 0.002000 0.24 .06 x 1079 1.0000 0.9997

6 10 0.004000 0.47 82 10°% 1.0000 1.0000

6 10 0.015625 1.84 A4x 107 1.0000 1.0000

8 10 0.001250 0.25 24x 107 1.0000 1.0000

8 10 0.002500 0.49 .89 % 10°% 1.0000 1.0000

8 10 0.010000 1.99 21x 107 1.0000 1.0000

10 10 0.000800 0.24 .32x 1077 1.0000 1.0000

10 10 0.001600 0.48 A40x 1077 1.0000 1.0000

10 10 0.006250 1.89 241078 1.0000 1.0000
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5.2. Two-Dimensional Advection—Diffusion Equation
5.2.1. Problem Statement
The initial condition is given by

(X, y, 0) = e L0 +-y07/25
which yields the exact solution

)\,2 g2 (g2 2
X,y,t) = o ef[x +y ]/Z(AD+2vt)
ey A2+ 2ut

having the far boundary conditions
(X, y,t) > 0 for(x,y) — oo,

whereio =1, (Xo, Yo) = (—3. 0), (X, y) € [-1, 1] with the velocity field

and
X = X — XoCOSt — ypsint, § =y -+ X,Sint — y, cost.

The following sections show the results after one revolution of the initial wave for t
spectral element and Lagrange—Galerkin spectral element methods on various grids
period for one revolution of the wave isravhich means that one revolution correspond
tot =27 so that the actual time step taken for each experiment is defined as

At actual _ 21 At reported

whereAt'®Po"edjs the time step reported throughout the paper. The Courant number fol

test cases is defined as
AtU
o =max| — |,
AS

whereU = /u2 + vZ andAs=+/Ax? + Ay?with (AX, Ay) being the distances between
any two adjacent nodes aqgh,, v) being the velocities at the midpoint of the two adjacer
nodes. The nondimensional diffusion coefficient is defined in a similar fashion as

_ max Aty
r= As? )’

5.2.2. Square Grid

Tables IV and V list the results for the spectral element (SEM) and Lagrange—Gale
spectral element methods (L-G SEM) for various valuelldér .« =0 andyu =0.01 on a
uniform square grid. In these tablsisandNg denote the polynomial order and the numbe
of elements in each direction. In other words, for the ddse4, Ng = 10, there are 1& 10
total elementgN{) and 41x 41 total grid points Klp) in the grid. The results obtained
for the 2D cases are quantitatively similar to the 1D results, where the Lagrange—Gale
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TABLE IV
Results for the 2D Advection Equation for the Spectral Element and Lagrange—
Galerkin Spectral Element Methods on a Square Grid foro = 0.50
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Method N Ne At o lell, M, M,

SEM 1 10 0.012500 0.53 A5x 10° 0.9742 1.0000
2 10 0.006250 0.54 88x 101 0.9854 1.0000

4 10 0.002000 0.51 21x 102 1.0003 1.0000

6 10 0.001000 0.52 Q4% 102 1.0000 1.0000

8 10 0.000625 0.55 B2x 10 1.0000 1.0000

10 10 0.000400 0.54 B2x 10 1.0000 1.0000

L-G SEM 1 10 0.012500 0.53 81x 101 0.4529 0.0211
2 10 0.006250 0.54 82x 101 1.0119 0.4666

4 10 0.002000 0.51 .38x 1072 1.0002 1.0448

6 10 0.001000 0.52 I2x10°3 1.0000 0.9994

8 10 0.000625 0.55 B0x 10°° 1.0000 1.0000

10 10 0.000400 0.54 B3x10° 1.0000 1.0000

spectral element method now surpasses the spectral element method in accuxagy6for

Note that this behavior is experienced by the pure advection and the advection—diffu
problems. In fact, the diffusion assists both numerical algorithms by smoothening out
waves. Table VI shows the results f@oe= 0 for various values of . These results are once
again in direct agreement with the 1D results and, hence, with the stability analysis. Ir
next sections, the grid and contours for various grids are illustrated for the pure advet
problem only as this is the more difficult case.

5.2.3. Icosahedral Grid

The icosahedral grid used in this test case is the planar analog of the icosahedral triar
grid on the sphere presented in [5]. In the spherical case, the initial icosahedron con

Galerkin Spectral Element Methods on a Square Grid foro = 0.50 and i = 0.01

TABLE V
Results for the 2D Advection-Diffusion Equation for the Spectral Element and Lagrange—

Method N Ng At v lell, M, M,

SEM 1 10 0.012500 0.005100 ABx 107t 0.9424 0.9751
2 10 0.006250 0.002550 ABx 1072 0.9890 0.9922

4 10 0.002000 0.000950 Bilx 108 0.9989 1.0000

6 10 0.001000 0.000460 A7 x 103 0.9997 1.0000

8 10 0.000625 0.000255 Bx 104 0.9998 1.0000

10 10 0.000400 0.000174 Ax 104 1.0000 1.0000

L-G SEM 1 10 0.012500 0.005100 Bx 10t 0.4173 0.0771
2 10 0.006250 0.002550 %101 0.9944 0.8010

4 10 0.002000 0.000950 .83x 102 0.9990 1.0099

6 10 0.001000 0.000460 Hx 104 0.9997 0.9998

8 10 0.000625 0.000255 &x 104 0.9998 1.0000

10 10 0.000400 0.000174 9O x 104 1.0000 1.0000
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TABLE VI
Results for the 2D Advection Equation for the Lagrange—Galerkin Spectral Element Method
on a Square Grid for Various o

Method N Ne At o llell, My M,

L-G SEM 4 10 0.0010000 0.26 B x 107 1.0001 1.0539
4 10 0.0020000 0.51 38x 107 1.0002 1.0448

4 10 0.0080000 2.04 96x 10 1.0002 1.0059

6 10 0.0005000 0.26 Q4% 10°% 1.0000 0.9993

6 10 0.0010000 0.52 12x 10°% 1.0000 0.9994

6 10 0.0040000 2.08 90 10°% 1.0000 1.0000

8 10 0.0003125 0.28 B4 x 10°% 1.0000 1.0000

8 10 0.0006250 0.55 B0 x 10°%° 1.0000 1.0000

8 10 0.0025000 221 Blx10°% 1.0000 1.0000

10 10 0.0002000 0.27 @5x10°% 1.0000 1.0000

10 10 0.0004000 0.54 B3x 10°% 1.0000 1.0000

10 10 0.0016000 2.15 .80 10°%° 1.0000 1.0000

12 grid points and 20 equilateral triangles; whereas in the planar case, the initial grid
hexagon containing 7 grid points and 6 equilateral triangles. Upon generating the ref
grid as is described in [5] the resulting triangles are then subdivided to form quadrilate
in order for the spectral element discretization to be used. In order to split the triangles
guadrilaterals, we find the midpoints of each of the triangle edges and form quadrilate
by connecting these midpoints to the centroid of the triangle.

Figure 8 shows the result for the Lagrange—Galerkin spectral element method
N =8, NI =72, andNp = 4705 with a Courant number of =2.43. The error norm for
this problem is %50 x 10~3. The uniform square grid which has the closest number of gr
points(Np) is the caseN = 6, Ng = 10 which hasNp = 3721 grid points. Table IV gives
an error norm of 72 x 103 for this case for = 0.52. Thus the icosahedral grid has giver
slightly less accurate results than the uniform square grid, but, considering the unstruc
nature of the grid and the Courant number being used, this result is quite good. In addi

FIG. 8. The grid and contours for the Lagrange—Galerkin spectral element method on an icosahedral
with N =8, NI =72, Np =4705, and> = 2.43.
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although results for other ordersfare not shown (for brevity), the method shows spectr
convergence even for this type of grid.

This icosahedral grid has a very efficient data structure associated with it that ca
used for searching. The other beneficial property of this grid is that all the quadrilat
elements are exactly the same size because the parent triangles are equilaterals. Thi
important property if a uniform representation throughout the domain is desired, wt
is usually the case for geophysical flows on the surface of the sphere where grid biz
is typically undesirable. However, if totally unstructured grids are desired, as is the ¢
with adaptive grids in computational fluid dynamics, will this strategy work? The followir
section addresses this case.

5.2.4. Unstructured Grid

Figure 9 shows the grid and contours for the Lagrange—Galerkin spectral element me
using an unstructured grid witN =8, NI =96, andNp =6273. The error norm for this
example is D8 x 10~* for o = 2.50. The unstructured grid generator is described in [4
However, this grid generator creates only triangles and so the triangles have to be s
vided into quadrilaterals. The uniform square grid clse 8, Ng = 10 havingNp = 6561
corresponds the closest to this unstructured grid case. The uniform square grid case:
an error norm of &0 x 107° for & = 0.55. Once again, better results are obtained for tt
uniform square grid but, considering the lack of structure of the current grid and theslarg
this result is quite impressive. In fact, the results on the unstructured grid also show spe
convergence ahNl is increased.

The results for this example show that the Lagrange—Galerkin spectral element me
does indeed work, even on such an irregular grid as the one presented here. In additio
scheme yields an extremely accurate result, even when large Courant numbers are
This example truly shows the power and flexibility of the proposed strategy of combin
the Lagrange—Galerkin method with the spectral element method.

o
S0,

/2,
(X ,l,":
7 rraa

FIG. 9. The grid and contours for the Lagrange—Galerkin spectral element method on an unstructurec
with N =8, NI =96, Np =6273, ancr = 2.50.
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5.2.5. Deformational Flow

In this section, the Smolarkiewz deformational flow problem is used to test the stab
of the numerical scheme. The initial function is assumed to be a cone given by

r
@(X’ y’o) =h<l_§>’

whereh = 1,1 = /(X — X0)2+ (Y — Yo)2, R = 0.15, (X0, Yo) = (3. 3), (X, ¥) € [0,1]
with the velocity field

u=0.32rsindrxsin4dry, v =0.32rcos4rxcossry.

This velocity field defines a set of 16 symmetrical vortices. The fluid particles remain
all time within the vortices in which they resided initially. Therefore, because each fl
particle is trapped within its vortex it is constrained to move along streamlines and
this reason the cone deforms. The analytic solution to this problem is presented in |
Figure 4ain [14] corresponds to the solutiort at0.65625 for our grid dimensions.

Any scheme which is not monotonic will not resolve this test case well because any s
amount of dispersion is exacerbated by the vortical flow. In addition, this is not the best
case for the spectral element method because high order methods are only guarant
yield exponential convergence when the function it is meant to resolve is smooth. Cle
this is not the case for this test problem. Nonetheless, it makes for an interesting problel
showing the strengths and weaknesses of the Lagrange—Galerkin spectral element m

The Lagrange—Galerkin spectral element was run on a uniform structured grid usil
total of 81x 81 grid points using various combinationsdfindNg. The low order schemes
perform far better than the high order schemes due to their monotonicity property. In o
words, the first-order schem&l (= 1) captures the essence of the analytic solution qui
well, butitis far too diffusive to be of any use. Neither the Lagrange—Galerkin method nor
spectral element method are naturally monotonic. Therefore, in order to resolve this test
accurately some monotonicity-preserving mechanism must be introduced into the nume
scheme. The simplest approach is to use the flux-corrected transport (FCT) scheme. T
not a new idea and, in fact, has been used previously to suppress spurious oscillation:
large gradients (such as shock waves) in high order spectral element methods [3]. In |
the FCT scheme uses a limiting procedure between a high order and a low order scl
to get the highest possible order without introducing a new local extremum. Therefore
write the interpolated value at the departure peimtsthe linear function

§=¢"+y@" -ah,

where the superscriptd andL denote the high and low order interpolations anel [0, 1]
represents the value of the limiting (or weighting). The goal is to obtain the maximum ve
of y which gives the highest order interpolation without producing a new maximum
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FIG. 10. The grid and contours for the Lagrange—Galerkin spectral element method for the deformati
flow problem withN =4, Ng = 20, ando = 1.02.

minimum value within the element. The computationsofan be written, as in [1], as

Q+=¢+_¢Lv Q_:fﬂ_—@L, P=¢H_¢L

min(1, %), if P <0,

Yy = O, |fP=0,
min(1, &), if P >0,

wheregp™ ande™ are the maximum and minimum values at the collocation points of t
element which claims the departure paigt The high order interpolation™ is obtained
by using the full polynomial of ordeN while the low order interpolatiop""is obtained
by using only the four vertices of the quadrilateral element, thereby yielding a first-or
interpolation which, by definition, is monotonic.

The Lagrange—Galerkin spectral element method with FCT was run on the grids

(N, Ng) = [(1, 80), (2, 40), (4, 20), (8, 10)]

with At =0.00875 up td = 0.65625. Once again, the low order schemes resolve the sh
of the analytic solution much better, but they are quite diffusive. The higher order sche
N = 8 also resolves the shape of the solution, but the contours are much too densely p:
and not nearly as finely defined as in the low order schemes. The sdWieskresults in
the overall best scheme for this problem. It resolves the shape of the analytic solution «
well and does not suffer too much diffusion. Figure 10 shows the grid and contours for
case. Note that the time step results in a Courant numheeof.02.

5.3. Computational Cost

Table VII summarizes the computational cost of using the spectral element both
plicitly (trapezoidal rule) and explicitly (Adams—Bashforth), and the Lagrange—Galer!
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TABLE VI
Percentage Breakdown of the Computational Costs Incurred by the Spectral Element
Method and the Lagrange—Galerkin Spectral Element Method

Matrix Searching Element Total CPU
Method N inversion algorithms operations (seconds)

SEM 4 0.0 0.0 99.7 271
Adams—Bashforth 6 0.0 0.0 99.6 868
(3rd order) 8 0.0 0.0 98.9 1589

10 0.0 0.0 98.2 2776
SEM 4 52.3 0.0 47.6 304
Trapezoidal rule 6 42.2 0.0 57.6 2133
(2nd order) 8 72.1 0.0 27.6 2914

10 55.8 0.0 43.8 4314
L-G SEM 4 45.2 9.7 44.8 344
Trapezoidal rule 6 38.2 12.3 49.4 2361
(2nd order) 8 46.1 19.7 33.1 4100

10 46.3 25.7 27.6 5723

Note.These results are for the 2D advection—diffusion equation with0.5 (0.25 for SEM, Adams—
Bashforth) ange = 0.01.

spectral element method. The results are illustrated for the 2D advection—diffusion e
tion. This case is chosen because the Lagrange—Galerkin method must solve a syst
matrix equations, whereas for the advection equation it does not. The computational
is divided into three categoriesiatrix inversion, searching algorithmandelement oper-
ations. Matrix inversiordenotes the percentage of total time to invert the global matri
searching algorithmss the percentage involving any operations required for the search
of departure points, anelement operationis the percentage involving any operation typ
ically associated with the spectral element method. The explicit spectral element me
has to be run at a lower Courant number due to its limited stability. Nonetheless, it is
far the most efficient. The error norms between the implicit and explicit spectral elem
methods are virtually identical for this case. The interesting thing to note is that while
Lagrange—Galerkin method is more expensive than the implicit spectral element methe
is not prohibitively expensive. In fact, the cost involving the searching algorithms increa
with increasingN but at a constant rate. Most of the cost, in fact, is in the matrix inversion.
other words, in order to optimize this method, the focus should be on the matrix invers
or in the element operations and not in the searching algorithms. Note that the resu
matrix for the Lagrange—Galerkin spectral element method is symmetric positive defi
which lends itself to efficient iterative solvers such as conjugate gradient methods. Fin
the Lagrange—Galerkin spectral element method can be doubled in efficiency merel
using a Courant number twice as large. Table VI shows that the Lagrange—Galerkin <
tral element method can be run using large Courant numbers up to 2 or greater wit
diminishing in accuracy.

6. CONCLUSIONS

A new method, the Lagrange—Galerkin spectral element method, is introduced whe
the Lagrange—Galerkin method and the spectral element method are combined. The
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attraction of this method is that it uses the basis functions of the spectral element me
as the interpolating polynomial for the Lagrange—Galerkin calculation of the depart
points and the corresponding interpolations of the variables at these points. This m
the method quite local in that the interpolation and calculations are all performed ir
element per element basis. This property is very important, particularly if we have
interest in implementing the method with unstructured/adaptive grids and on distribt
memory computers; this topic, however, is left for future work.

The stability analysis shows that while the spectral element method is stable fos Jarg
this range is not recommended as the accuracy decreases significantly. The analysis
that when the Lagrange—Galerkin method is fused with the spectral element method
decrease in accuracy no longer occurs, thereby allowing larger time steps to be used
in turn increases the efficiency.

The 2D results on the various grids show that the Lagrange—Galerkin spectral elel
method yields extremely accurate solutions, even while using large Cournat numbers a
different types of grids. The icosahedral grid results are especially encouraging, particu
because this grid has proven to be quite promising for applications on the sphere
The results on the unstructured grid show that the Lagrange—Galerkin spectral ele
method yields very good results, even on distorted grids and while using large Cou
numbers. However, because the Lagrange—Galerkin method relies heavily on interpolz
the spectral element basis functions must be of a sufficiently high order to obtain acct
values at the departure points. The analysis showsNhatust be greater than four, in
order to reap the full benefits of this new hybrid scheme. This is not the order whicl
recommended, but rather, it is the minimum order that ought to be used. Increasing
order ofN beyond this minimum value increases the accuracy of the scheme but also in
additional computational costs. The costs are not prohibitive, but they are nonethe
expensive. However, the dominant parts of the algorithm are the same operations w
plague any implicit method, namely, the inversion of the global matrix. Efforts to optimi
the method are currently underway. In addition, explicit time discretization methods s
as those proposed in [6, 8] may have to be explored, thereby eliminating the need to i
a global matrix.
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